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Abstract— This project mainly discusses about the design of 

controller for a nonlinear system like rotary inverted pendulum. 

This system is under actuated and well-suited for verification 

and practice of ideas emerging in control theory. Nonlinear 

systems exhibit instability, making the design of controllers for 

balancing in the stable position, a challenging problem. The 

dynamic model of the rotary inverted pendulum is identified 

first and the state space representation of the system is obtained. 

The controller is designed by using the pole placement technique 

and Linear Quadratic Regulator technique in MATLAB 

software package. The regulatory problem and the servo 

problem of rotary inverted pendulum system is solved with these 

controllers designed. The different controller design is 

implemented in simulation and their performances are 

compared. Simulation results onto a nonlinear system are given 

to illustrate the effectiveness of the developed strategies.  

 

Index Terms— Non-Linear Systems, Rotary Inverted 

Pendulum, Pole Placement Technique, Servo Problem, 

Regulatory problem. 

I. INTRODUCTION 

  ROTARY INVERTED PENDULUM represents a 

significant class of nonlinear under actuated mechanical 

systems, well-suited for verification and practice of ideas 

emerging in control theory .It is a very good model for the 

altitude control of a space booster rocket and a satellite, an 

automatic aircraft landing system, aircraft stabilization in the 

turbulent air-flow, stabilization of a cabin in a ship etc. 

 Stabilization of a pendulum rod in the unstable upright 

position is considered a benchmark control problem which 

has been solved by attaching the pendulum to a base that 

moves in a rotary manner in a horizontal plane.  

Rotary inverted pendulum   is excited by a  DC motor , and is 

equipped with sensors to measure the angular displacement  

of the pendulum  and the angular velocity and position of the 

DC motor. It consists of an arm with a pivot at one end and a 

metal shaft on the other end. The pivot-end is mounted on top 

of the rotary servo base unit. The pendulum link is attached to 

a metal shaft and is instrumented with a encoder to measure its 

angle. The result is a horizontally rotating arm with a 

pendulum at the end. The paper is organized as follows: 

● The modeling of the system and state space 

representation of the system is obtained. 

● Control strategy which involves using pole-placement 

technique to solve the regulatory problem and LQR 

technique to solve the servo problem. 
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II. MODELING OF THE ROTARY INVERTED PENDULUM 

The rotary inverted pendulum consists of three sections 

namely, the arm section, the pendulum bob section and the 

motor section. The standard right-handed Cartesian 

co-ordinate  system is used. Fig1 shows the simple rotary 

inverted pendulum and fig2 shows the co-ordinate system for 

the derivation of the dynamic model of the system. 

 

 
  

                         Fig1.Rotary inverted pendulum 

 

The angular position of the arm, α ,is assigned to be increasing 

when the arm is rotating about the z-axis in the right-handed 

sense. The reference of α is taken to be the x-axis. The angular 

position of the pendulum, β and θ , are assigned to be 

increasing when the pendulum is rotating about an axis 

through the arm section from the origin to the pivot point of 

the pendulum, in the right-handed sense. The reference of β is 

taken from the upward vertical and the reference of θ is taken 

from the downward vertical. 

  
 Fig2.co-ordinate system for  derivation of dynamic model 

 

A. Equations involved in deriving the model: 

The torque equation of the motor can be written as follows: 
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 The kinetic energy of the arm ,T0, and the potential energy 

,V0, can be written as: 

                            

=    ……….…………(1) 

V0= 0 

Kinetic energy of the pendulum bob , T1 , and the potential 

energy , V1, can be written as: 

 

 

 

 
 

-               ………………………………..(2) 

 

 
 

The energy equation used in Lagrange’s equation , L , can be 

formulated as: 

 

 

 

 

 
 

Applying (1) and (2) in the above equation: 

 

 

 

 
The equation for the axis of rotation for α , can be written as: 

 
-  

=-  

 

The equation for the axis of rotation for β , can be written as: 

  

 

+  

 
=0 

 

The dynamic equations for the upward position : 

  

 
 

  
 

 
  

The dynamic equations for the downward position: 

 

  
 

 

  

B. Representation 

 

Symbol Unit Description 

 

α rad arm angle about z-axis, taken from    positive  x-axis. 

β rad pendulum angle, taken from the upward vertical axis. 

θ rad pendulum angle, taken from the downward vertical 

axis. 

J0 Kg- m
2 

moment of inertia of  arm section 

J1 Kg-m
2  

moment of inertia of pendulum section 

C0  Kg-m
2
/s viscous friction co-efficient of arm section 

C Kg-m
2
/s viscous friction co-efficient of pendulum section 

m1 Kg effective mass of the pendulum section 

l1 m effective length of pendulum section 

Kt N-m/A motor torque constant 

Kb V-s/ Rad motor back EMF constant 

Ku V/count motor back EMF constant 

Ra Ω motor armature coil resistance 

g m/s
2 

acceleration due to gravity 

u counts motor driving command 

L0 m physical distance between the pivot of pendulum section 

and axis of rotation of  arm section 

C. State Space Representation 

The linear model can be represented as: 

 

where  

a =  

 

b =  
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c =  

 

d =  

 

e =  

 

f =  

 and 

= 0.08591 (kg m
2
) 

J1 = 0.000217 (kg m
2
) 

=  0.006408 (kg m
2
/s) 

=  0.000158 (kg m
2
/s) 

Kt = 0.1144 (Nm/A) 

Kb = 0.1146 (Vs/Rad) 

Ra = 2.3 (Ω) 

m1 = 0.0319 (kg) 

l1 = 0.1572 (m) 

L0 = 0.1370 (m) 

Ku = 0.0523 (V/Count) 

g = 9.81 (m/s
2
) 

 

Substituting the known constant values and applying 

them in the above equations, we get 

 

 

III. REGULATORY PROBLEM 

 

In this case , the desired value is to remain fixed and the 

purpose of the control system is to maintain the controlled 

variable  at desired value in spite of changes in load. The 

general block diagram of the regulatory problem of the rotary 

inverted pendulum is shown in the below figure. 

 
  

Fig3. Regulatory problem of rotary inverted pendulum 

 

A.Pole-Placement Technique: 

Actual poles=eig (A) = -7.3083  -1.2981  7.0698 

Desired poles are calculated by keeping the settling time as 5 

seconds and peak overshoot as 1. 

Desired poles=-0.8+2.25i    -0.8-2.25i   -2 

Using the pole placement technique , the gain value of the 

controller is found as: K= 3.0108  159.8903   10.9588  

 

The plots of arm angle versus time and pendulum angle taken 

from upward vertical axis versus time , and pendulum angle 

taken from downward vertical axis versus time are as follows: 

 

 
Fig4.time vs arm angle about z-axis 

 

 
Fig5.time vs pendulum angle taken from upward vertical 

a

 
Fig6.time versus pendulum angle taken from downward 

vertical axis 

IV. SERVO PROBLEM 

In this case, we assume that there is no change in load and we 

are interested in changing the variable according to some 

function of time.  

The servo problem can solved using the LQR technique 
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Fig7.type1 servo system 

D. Linear Quadratic Regulator Technique 

 
= Ax + Bu 

Where x= state vector(n-vector) 

           u=control vector(r-vector) 

           A=n*n constant matrix 

           B=n*r constant matrix 

 

A quadratic performance index,where the limits of the 

integration are 0 and infinity, such as 

 

J =  L (x,u)dt 

 

Where L(x,u) is a quadratic function or Hermitian function of 

x and u , will yield linear control laws; that is 

 

u(t)=-K x(t) 

The  design of optimal  regulator systems based on such 

quadratic performance indexes boils down to the 

determination of the elements of the matrix K. 

 

J =  

Where Q is the positive –definite Hermitian, or , real 

symmetric matrix ,R is a positive-definite hermitian or real 

symmetric matrix ,and u is unconstrained. 

 

 Fig8. time vs arm angle about z-axis 

 

 
Fig9. time vs pendulum angle taken from upward vertical        

axis 

 
Fig10. time vs pendulum angle taken from downward vertical 

axis 

 

V. DISCUSSION AND RESULTS 

Earlier, the nonlinear systems and their dynamic equations 

were understood by obtaining their transfer functions and 

designing a suitable controller using the transfer function. The 

state space representation is a new technique and it also helps 

in understanding the interaction of one state variable with 

another. It also explains how each input has an effect on the 

output. Thus the rotary inverted pendulum system can be 

linearized by observing the factors that a influence the 

linearization process. The stabilization of the nonlinear 

systems was done through the pole placement technique. The 

actual poles of the nonlinear system were replaced with the 

desired poles by giving a desired settling time. Thus it was 

found that the system can be stabilized in spite of any change 

in loads. The rotary inverted pendulum system is stabilized 

about one equilibrium position i.e, the arm angle.Thus the 

rotary inverted pendulum system was able to track to a given 

set point.This servo problem was solved using the linear 

quadratic regulator technique.Though a lot of work has been 

done on these systems, solving the servo and regulatory 

problem is always a challenging work when s desired settling 

time is required. 

VI. CONCLUSION 

In this paper, the state space representation of the nonlinear 

systems were obtained from the dynamic equations. Since a 

suitable controller to stabilize the system about one 

equilibrium point was designed using the pole placement 

technique proper gain values were obtained and the nonlinear 

systems were proved to be regulatory. Thus the rotary 

inverted pendulum system was able to track to a given set 

point. 
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